
Inversion Attack on Machine Learning Models:
Stealing User Input Data

Norman Becker
nobe00001@stud.uni-saarland.de

Philipp Baus
s8phbaus@stud.uni-saarland.de

Mejbah Uddin Shameem
s8mesham@stud.uni-saarland.de

Abstract—Using inversion attacks on machine learning models,
it is possible to steal training and input data. This can lead to
major privacy issues, especially when models use sensible data
like medical information or a person’s image. In this paper, we
precisely explain how a specific inversion attack can steal data
that is put into a ”split” neural network by a user. Furthermore,
we will evaluate the impact of such an attack regarding privacy
and provide exemplary ways to defend against an inversion
attack.

I. INTRODUCTION

Nowadays, the amount of both use cases and application
purposes of machine learning are soaring. Capabilities of
contemporary ML models vastly exceed classical digit recog-
nition. Many of them are used in our daily life for example
in medical research [1] or for face recognition. As the field
of machine learning is growing it is necessary to also think
about security aspects of machine learning models. Without
proper protection an attacker might be able to steal personal
data, posing the threat of large-scale privacy breaches.
One type of attack that is able to steal data from a model is
called ”inversion attack”. Attacks of this kind try to steal data
input or training data from a model by inverting it. There are
many possible ways to achieve this goal, depending on the
architecture of, and access to, the model. In previous works,
researchers were able to reconstruct a person’s image given
only the person’s name and access to a facial recognition
system trained on person’s image [2].They also guided an
experiment in which a decision tree model, used to predict
a person’s willingness to take risks, like cheating on their
partner, based on that person’s steak preparation preference,
was attacked. Then they used a model inversion attack to find
out whether a person was cheating or not [2]. Data like a
person’s image, or whether a person is cheating or not, should
be kept private under all circumstances, but model inversion
attacks are able to leak them, so protecting machine learning
models from inversion attacks is quite important.

II. ATTACK DESCRIPTION

In this paper, we will focus on a special inversion Attack
aiming to steal data that is put into a split neural network
by a user. ”Split”, in this context, means that one part of the
model is calculated on a server, and the other part on a user’s
device. The attack works similar to the one used in [5].
In order to enable calculation of the model’s client side, the
sever must send the output of its part of the model to the

user. We assume that an attacker is able to intercept this
output. The attack then tries to reconstruct the input of the
target network by using the intercepted data with a previously
trained attacking neural network.

The attacking network is trained as follows: The target
network is queried on a dataset chosen by the attacker. The
intercepted output of the model is then used as input for the
attacking network. The loss between the original input from
before mentioned dataset and output of the attacking network
is calculated. Then we update the attacking network’s weights
accordingly. At the end we should have a classifier that can
reconstruct the target model’s input data from the intercepted
output. This whole process is illustrated in figure 1. Black

Fig. 1. Architecture of the training process

box access is enough to execute the attack. This is because
we don’t have to know anything about the target network’s
structure or its weights to perform the attack. We only need
to be able to intercept its output. As the training depends on
the intercepted output of the target network, the attacking
network is bound to the target classifier. Consequently, the
attacking network must be retrained if the target classifier
changes.

III. EVALUATION OF INVERSION ATTACK

A. Procedure

We ran the attack on three neural network classifiers, that
all differed from each other by their complexity. These three
classifiers are:



1. SimpleNet:
Layer 1:

1. Conv2d(1, 6)
2. Conv2d(6, 16)

Layer 2:
3. Linear(256, 128)
4. Linear(128, 10)

2. AlexNet:
Layer 1:

1. Conv2d(in=1, out=32)
2. MaxPool2d(kernelsize=2)
3. ReLU()

Layer 2:
1. Conv2d(in=32, out=64)
2. MaxPool2d(kernelsize=2)
3. ReLU()

Layer 3:
1. Conv2d(in=64, out=128)

Layer 4:
1. Conv2d(in=128, out=256)

Layer 5:
1. Conv2d(in=256, out=256)
2. MaxPool2d(kernelsize=3)
3. ReLU()

Layer 6:
1. Linear(in=2304, out=1024)
2. Linear(in=1024, out=512)
3. Linear(in=512, out=10)

3. ResNet:
Layer 1:

1. Conv2d(in=1, out=16)
2. BatchNorm2d(in=16, eps=0.0001, momentum=0.1)
3. ReLU()

Layer 2:
1. ResidualBlock(in=16, out=16)
2. ResidualBlock(in=16, out=16)

Layer 3:
1. ResidualBlock(in=16, out=32)
2. ResidualBlock(in=32, out=32)

Layer 4:
1. ResidualBlock(in=32, out=64)
2. ResidualBlock(in=64, out=64)

Layer 5:
1. AvgPool2d()
2. Linear(in=64, out=10)

ResidualBlock(in, out):
1. Conv2d(in=in, out=out)
2. BatchNorm2d(in=in, eps=0.0001, momentum=0.1)
3. ReLU()
4. Conv2d(in=in, out=out)
5. BatchNorm2d(in=in, eps=0.0001, momentum=0.1)

We trained each of these three classifiers on the MNIST
dataset and then tried to attack them. Furthermore, we
attacked every classifier three different times as we trained
the attacking network with three different datasets:

1) EMNIST
2) FashionMNIST
3) Uniformly random dataset

By doing this we are able to compare whether the choice
of the dataset used to train the attacking network makes any
difference regarding the success of the attack. We explicitly
chose these three datasets as they vary in their differences
to MNIST. EMNIST is pretty similar to MNIST, while the
uniformly random dataset doesn’t have anything in common
with MNIST. FashionMNIST is in the middle between these
two, as it still has some commonalities to MNIST (10 classes,
greyscale pictures, 28x28 pixels), but also some differences as
its pictures show pieces of clothing.

B. Results

1) Training with EMNIST: First we started to train the
attacking network with EMNIST and attacked every classifier
with it. As we already said, EMNIST is pretty close to
MNIST. When looking at the results shown in Figure 2, we
can see that the attack on the simplest network (SimpleNet)
worked pretty well, but became less successful with increasing
complexity of the classifier. AlexNet and ResNet inherently
slightly differ from the input image. Despite the performance
of the attack decreasing when using it on a more complex
classifier, one is still able to recognize the digits when the
most complex classifier (ResNet) is attacked. To conclude,
if we have a dataset close to the actual dataset used for
training, the inversion attack works pretty well and one is
able to reconstruct the images with high accuracy, even when
attacking complex neural networks.

2) Training with FashionMNIST: We now trained the
attacking network with the FashionMNIST dataset. As it
contains no digits, but clothing pieces, we expected the results
to be much worse than in our first attack with EMNIST.
However, when we ran the attack on every classifier, the
results showed that the attack still worked really well for
SimpleNet. For AlexNet and ResNet the attack did not
perform really well anymore, although with a little bit of
imagination you can still recognize the digits in the AlexNet
attack. Overall, it is again apparent that the performance of
the attack decreases with the increasing of the complexity of
the classifier.

3) Training with uniformly random dataset: At last we
trained the attacking network with a uniformly random
dataset, which doesn’t have anything in common with the
dataset the target classifier was trained on. We created
1000 uniformly random 28x28 images, which we used to
train the attacking network. We could again see the inverse
relationship between the complexity of the classifier and
the performance of the inversion attack. Although we used



the random dataset, the attack on the simplest network still
worked and one can easily recognize the digits contained in
the picture. The attacks on the two more complex networks
didn’t work anymore using the random dataset, as is visible
in the resulting images, which all look pretty much the same
and don’t contain any readable digit.

Fig. 2. Example Output from attacking different Models (first) with an
attacking network trained on different datasets (second)

All in all, our inversion attack has yielded quite good results,
which surprised us.

IV. DEFENSES AGAINST INVERSION ATTACKS

Though more focus has been put on defending membership
inference attack in privacy and security community, there are
still some researches for defending model inversion attack as
well. Purifying the prediction score [3] can be as good as to
defend both model inversion and membership inference attack.
The authors propose a unified purification framework to defend
data inference attacks by “purifying” the prediction scores. The
framework takes the prediction scores of a trained target model
as input and produces a purified version to satisfy one or both
of these defense goals: (I) preventing model inversion attack
and (II) preventing membership inference attack. Here we only
focus on the defense goal (I). They achieve the purification
framework by training a purifier, which takes the confidence
scores of the target model as input and “concentrate” them on
clear patterns. They train an additional adversarial model(H)

Fig. 3. Purification method for defending model inversion

for defending model inversion. Figure. 3 demonstrates the
complete purification framework. The purifier takes target’s
output prediction as input and then jointly trains the purifier
G and the adversarial model H. The purifier keeps updating the
prediction scores to minimize the inversion accuracy whereas,
the adversarial model which adaptively performs model inver-
sion attack against the purifier formulated as min-max game
between the purifier and the adversarial. The purifier reduces
dispersion between input vectors(confidence scores), as well
as preserves the utility of the classifier. The reduction of
the dispersion can make the confidence score vectors less
sensitive to the change of the input data, which decreases their
correlation and results in the mitigation of model inversion
attack. After the training adversarial model H can be discarded.

Fredrikson et al. [3] proposed to degrade the quality or
precision of the gradient information retrievable from the
model as their attack on facial recognition models are all based
on gradient descent. There is no obvious way to achieve this
in the white-box setting while preserving model utility, but in
the black-box setting this might be achieved by reducing the
precision at which confidence scores are reported.

Fig. 4. Face reconstruction attack with rounding level r. The attack fails to
produce a non-empy image at r = 0.1, and at r = 0.05 the image is nowhere
near identifiable

They tested this approach by rounding the score produced
by the softmax model, and running the black-box reconstruc-
tion attack. The results are presented in Figure. 4 for rounding
levels r = 0.001, 0.005, 0.01, 0.05; the attack failed to produce
an image for r = 0.1. ”No rounding” corresponds to using
raw 64-bit floating-point scores to compute numeric gradients.



Fig. 5. Reconstructed samples by mGAN-AI with DP

Notice that even at r = 0.05, the attack fails to produce a
recognizable image. In federated learning setting, mGAN-
AI [4] does not violate the differential privacy (DP), which
aims to prevent the recovery of specific samples used during
the training. In other words, DP tries to make the adversary
fail to tell whether a given sample belongs to the training
set. However, without inferring the membership of a given
sample, it can still generate samples close to the real samples
as demonstrated in Figure. 5, which obviously leads severe
privacy violation.

Our type of model inversion attack closely matches with
the federated learning approach as the training is split up in
multiple devices. Wang et al. [4] reconstructed good quality
of recognizable images despite of having differential privacy.
In that sense, we verified that as in our setting we do not
rely on the confidence scores for the attack rather intercept
the output of the model after the first stage of training it is
impossible to defend using the three methods of defending
model inversion attack described above. We would say it
remains as an open research direction to defend explicitly this
type of model inversion attack, while securing the connection
when exchanging data between multiple devices could be a
workaround.

V. CONCLUSION

In conclusion, our attack is not a typical inversion attack,
which tries to steal training data, as it is only works when a
split model is used, with the attacker being able to intercept
the data sent between the parties. When this is the scenario,
our attack works pretty well and could be easily able to steal
user data. Against simple networks, with a small number of
layers, our attack works almost perfectly. With an increasing
number of layers, as well as increasing layer complexity,
the attack performance decreases. Another factor that impacts
the results of our attack is the choice of training dataset.
When a dataset with high similarity to the target’s training
dataset is chosen,the attack will also work for complex models.
Contrarily, if the chosen dataset largely differs from the target’s
training dataset, the attack will produce worse results. In
general, model complexity and choice of the dataset have a
huge impact on the success of the attack. Defending the model
is pretty hard as no defenses used against normal inversion
attacks are working against this kind of attack. The only thing

that could be done to prevent an attacker from stealing data
might be to secure the connection between the user and the
server.

REFERENCES

[1] C.-L. Chi, W. Nick Street, J. G. Robinson, and M. A.Crawford.
Individualized patient-centered lifestyle recommendations: An expert
system for communicating patient specific cardiovascular risk infor-
mation and prioritizing lifestyle options. J. of Biomedical Informatics,
45(6):1164–1174, Dec. 2012.

[2] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model Inversion
Attacks that Exploit Confidence Information and Basic Countermea-
sures. CCS ’15: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Pages 1322–1333, Oct. 2015.

[3] Ziqi Yang, Bin Shao, Xuan Bohan, Ee-Chien Chang, and Fan Zhang.
Defending Model Inversion and Membership Inference Attacks via
Prediction Purification. arXiv:2005.03915 [cs.CR], May. 2020.

[4] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wangy,
and Hairong Qi. Beyond Inferring Class Representatives: User-Level
Privacy Leakage From Federated Learning. arXiv:1812.00535 [cs.LG],
Dec. 2018.

[5] Ziqi Yang, Ee-Chien Chang, Zhenkai Liang, Adversarial Neural Network
Inversion via Auxiliary Knowledge Alignment, arXiv:1902.08552v1
[cs.CR] 22 Feb 2019


	Introduction
	Attack description
	Evaluation of Inversion attack
	Procedure
	Results
	Training with EMNIST
	Training with FashionMNIST
	Training with uniformly random dataset


	Defenses against Inversion attacks
	Conclusion
	References

